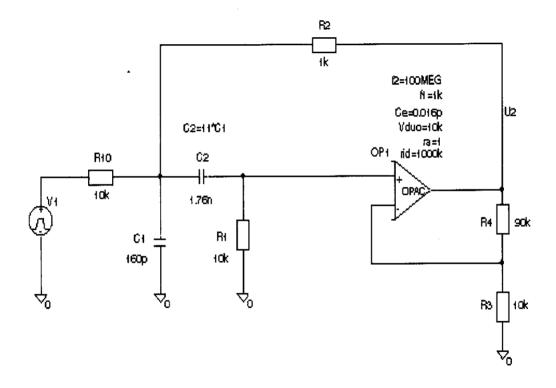
Georg--Simon-Ohm Fachhochschule Nürnberg Fachbereich Nachrichten- und Feinwerktechnik Prof. Dr. J. Siegl; Semester NT5/ME5; WS 98/99

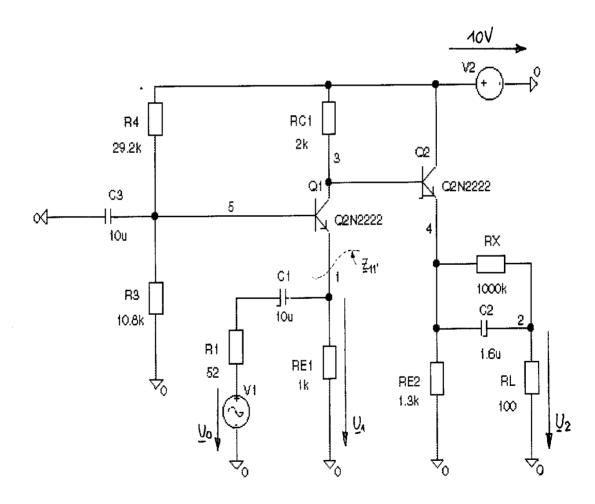
Name:


Abschlußprüfung Schaltungstechnik

Hilfsmittel: max. 6 handbeschriebene DIN-A4-Blätter; Taschenrechner

4 Aufgaben; Prüfung am 05.02.99

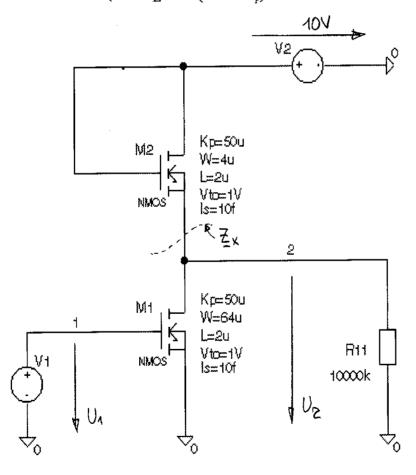
1. Aufgabe


- 1.1 DC-Analyse: Wie groß sollte R₁ für "Ruhestromkompensation" bei Verwendung eines realen OP-Verstärkers sein?
- 1.2 AC-Analyse: Untersuchen Sie die Stabilität der Schaltung unter Berücksichtigung des Linaearverstärkers mit $\underline{V}_{ud} = 10000/(1+jf/1\text{KHz})$. Bestimmen Sie die Schleifenverstärkung bei geeignet offener Schleife und skizzieren Sie diese im Bode-Diagramm. Unter welchen Bedingungen (konkrete Angaben) ist die Schaltung stabil?

2. Aufgabe

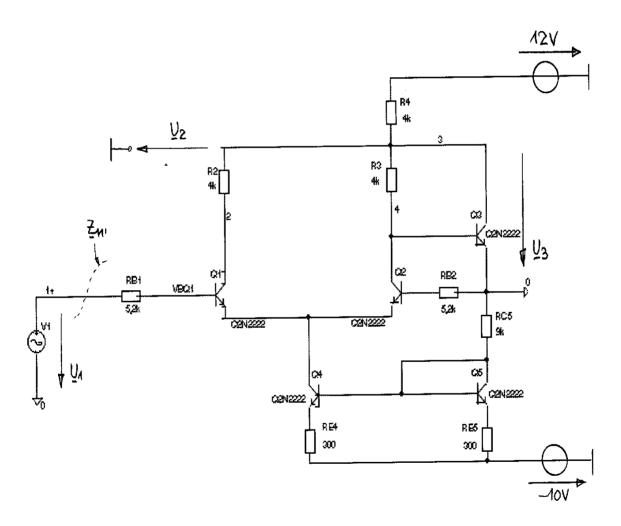
$$Q_1$$
, Q_2 : $I_8 = 10^{-15}$ A; $\beta = 100$;

- 2,1 DC-Analyse: Ermitteln Sie den Arbeitspunkt von Q_1 , Q_2 .
- 2.2 Welchen Wert müßte R_{Cl} annehmen, um größtmögliche Aussteuerung ($U_{CE,Ql}$ sollte mindestens >= 1V sein) zu erzielen?
- 2.3 AC-Analyse im Arbeitspunkt:
 - a) Wie groß ist \mathbb{Z}_{11} ?
 - b) Ermitteln Sie C_1 so, daß die untere Eckfrequenz der 1. Stufe bei ca. 1 kHz liegt.
 - c) Geben Sie die Verstärkung der 1. Stufe, der 2. Stufe und die Verstärkung $\underline{U}_2/\underline{U}_1$ an.
- 2.4 Welche Aussteuerbarkeit U2_{max} liegt bei der 2. Stufe vor?


3. Aufgabe

M₁, M₂:wie angegeben.

- 3.1 DC-Analyse: Bestimmen Sie U_2 bei U1 = 0V; 1V; 2V. Geben Sie jeweils an in welchem Betriebszustand sich M_1 , M_2 befinden; skizzieren Sie $U_2 = f(U_1)$.
- 3.2 AC-Analyse im Arbeitspunkt $U^{(DC)}_{1} = 2V$:
 - a) Geben Sie \underline{Z}_X an.
 - b) Wie groß ist die Verstärkung U2/U1?


Allgemein gilt:/

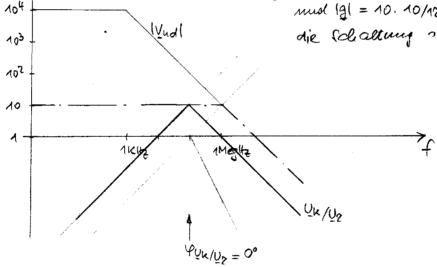
$$I_{D} = \begin{pmatrix} Kp \frac{W}{L} \left[\left(U_{GS} - U_{p} \right) \cdot U_{DS} - U_{DS}^{2} / 2 \right] \dots \text{Linearer Betrieb} \\ \left(Kp \left(\frac{W}{L} / 2 \right) \right) \left(U_{GS} - U_{p} \right)^{2} \dots \text{Sättigungsbetrieb} \end{pmatrix}$$

4. Aufgabe
$$(Q_i: I_s = 10^{-15} \text{ A}; \beta = 100)$$

- 4.1. DC-Analyse: Bestimmen Sie die Arbeitspunkte der Transistoren Q_1 bis Q_5 .
- 4.2 AC_Analyse:
 - a) Wie groß ist der Eingangswiderstand an \mathbb{Z}_{11} ?
 - b) Geben Sie ΔI_{CQ1} und ΔI_{CQ2} in Abhängigkeit von ΔU_1 an.
 - c) Wie groß ist die Verstärkung ΔU3/ΔUBE,Q3?
 - d) Ermitteln Sie ΔU_2 in Abhängigkeit von ΔU_1 .

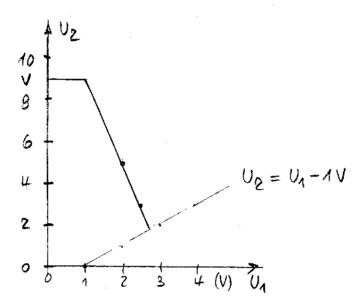
a)
$$\left[\underbrace{U_{8} - U_{k} \cdot \frac{1 + j \omega m R_{i} G}{j \omega m R_{i} G}} \right] / R_{2} = \underbrace{U_{k} \cdot \frac{1 + j \omega m R_{i} G}{j \omega m R_{i} G}} \left(j \omega G + \frac{1}{R_{i}} \right) + \underbrace{U_{k} / R_{i}}$$

$$10 \underbrace{U_{2}} = \underbrace{U_{k} \left\{ \frac{1 + j \omega m R_{i} G}{j \omega m R_{i} G} \cdot (10 + j \omega R_{i} G + 1) + 1 \right\}}$$


$$mo \underbrace{U_{2}} j \omega R_{i} G = \underbrace{U_{k} \cdot \left\{ 11 + 122 j \omega R_{i} G + m G \omega R_{i} G \right\}^{2} + j \omega m R_{i} G}$$

$$\frac{U_K}{U_2} = \frac{10 \text{ jwRG}}{1 + 12 \text{ jwRG} + (\text{jwRG})^2}$$

$$\frac{U_{8}}{U_{1}} = \frac{10}{1+j f/1 Meg Hz}$$


c)
$$3 = \frac{\tilde{\Lambda}^5}{\tilde{\Lambda}^K} \cdot \frac{\tilde{\Lambda}^4}{\tilde{\Lambda}^5}$$

d) their f=100kHz im fg=0° mud lgl = 10.10/12 >1; die schaltung schwingt!

2.3 a)
$$Z_{111} = 13.7$$
; b) $C_1 \approx 10 \mu F_1$; c) $V_{11} = 150$; $V_{21} = 1$
d) $\Delta U_2 / 100R = (5.3V - \Delta U_2) / 1.3K; $\Delta U_2 = 0.4V$$

3. Auffahe: 3.1
$$U_1=OV$$
: M1: From g_{ii} : M_2 : From g_{ii} : G_{ii}

d)
$$\Delta U_2 = \Delta U_1 \cdot \frac{4000}{52} \cdot \frac{2}{4} = 40$$